SYNTHESIS OF MACROLIDE ANTIBIOTICS. 1. SYNTHESIS OF THE C_1-C_6 SEGMENT OF 14-MEMBERED MACROLIDE ANTIBIOTICS.

N.K. Kochetkov^{*}, A.F. Sviridov, M.S. Ermolenko N.D. Zelinsky Institute of Organic Chemistry, USSR Academy of Science, Moscow, 117334, USSR

<u>Abstract</u>. The C_1-C_6 segment of a number of 14-membered macrolide antibiotics have been synthesized started from levoglucosan.

The employment of carbohydrates as a chiral precursors is one of the most promising directions in natural products synthesis. In accordance with our programme on utilization of carbohydrates for macrolide antibiotics construction we now report the synthesis of C_1-C_6 segment of a number of structurally related 14-membered macrolides¹.

СО — — Ме

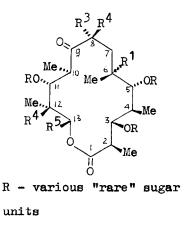
-H

=0

-н -R⁴

HO-

H---Me


но-

H-

H--Me

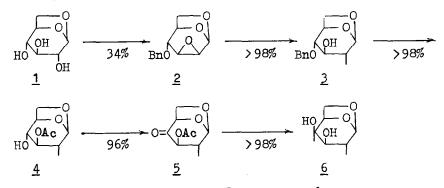
HO-

Me-

Antibiotic	R ¹	R ²	r ³	r ⁴	r ⁵
erythromycins A, C					
megalomicin A	он	н	Me	ОН	Et
erythromycin B	11	u	11	н	11
oleandomycin, O-de-					
methyloleandomycin	н	0 CH2		π	Me

Synthetic strategy, the programme base on, exploits the next principles

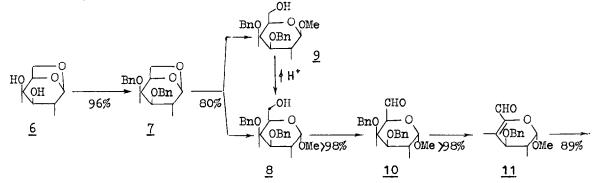
1. The structures of the antibiotics' aglycones are subdivided into C_1-C_6 and C_9-C_{13} segments are to be synthesized from carbohydrate(s).

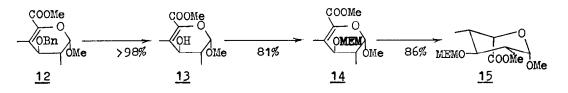

2. Since the configurations at C_2-C_3 and $C_{10}-C_{11}$ are identical for all antibiotics under consideration the selecting synthetic scheme should provide the possibility to synthesize all the segments via uniform pathway in maximum common stages.

3. The hydroxyls in the segments have to be specifically protected in order to provide selective glycosidation of synthetic aglycones at the latest stages of the synthesis.

In this and followed papers we demonstrate the application of the above principles.

The synthesis of antibiotics under consideration starts from levoglucosan $\underline{1}$ whose bicyclic skeleton provides high regio- and stereoselectivity of reactions² and possesses the conformation convenient for desirable transformations.


The key compound in the synthesis - 1,6-anhydro-2-deoxy-2,4-di-C-methyl- β -D-galactopyranose <u>6</u> - was obtained according to the following sequence^{3,4}.



The reaction of the known oxirane 2^5 with Me₂Mg⁶ (ether, reflux, 12 h) led selectively and practically quantitatively to the alcohol 3 [mp 80.5-81.5° (benzene-hexane); $[\ll]_{2}$ -33.2°; pmr: 5.28(broad s, H-1), 3.28(broad s, H-3)]. Acetylation (Ac₂O-Py) followed by hydrogenolysis (5% Pd/C, MeOH) afforded 4 (syrup; $[\ll]_{2}$ -51.2°). Oxidation of 4 with DMSO-(COC1) 2^7 (low temperature work-up was used to prevent isomerisation at C₃) provided ketone 5 [mp 72-74°(ether); $[\ll]_{2}$ -1.6°; pmr: 5.35(s, H-1), 5.15(d, J_{2,3}=8.2 Hz, H-3)] which was converted into glycol <u>6</u> [syrup; $[\alpha]_{\beta}$ -26.0°; pmr: 5.28(broad s, H-1), 3.31(broad s, H-3)] by treatment with MeMgJ (3 eq, reflux, 1 h).

The exhaustive benzylation of <u>6</u> (NaH/DMF, BnCl) gave dibenzyl ether <u>7</u> [mp 73-74°(hexane); $[\varkappa]_{\beta}$ -26.1°] which being treated with 20% HC1/MeOH (20°, 4 h) produced the mixture (9:2) of methyl \measuredangle - (<u>8</u>) [syrup; $[\varkappa]_{\beta}$ +123°; pmr: 4.67(d, J_{1,2}=3.5 Hz, H-1), 3.46(d, J_{2,3}=11 Hz, H-3)] and β - (<u>9</u>) glycosides. The latter was converted (3% HC1/MeOH, 20°) into <u>8</u>. Oxidation of <u>8</u> as above⁷ afforded aldehydo derivative <u>10</u> [syrup; $[\varkappa]_{2}$ +66.5°; pmr: 4.72(d, J_{1,2}=3.2 Hz, H-1), 3.44(d, J_{2,3}=11 Hz, H-3), 3.80(d, J_{5,CHO}=2 Hz, H-5), 9.64(d, CHO)]. Heating of <u>10</u> with methanolic Ca(OH)₂⁸ led to smooth elimination of benzyl alcohol with formation of \prec , β -unsaturated aldehyde <u>11</u> [syrup; $[\varkappa]_{\beta}$ +197°; pmr: 4.86(d, J_{1,2}=2.5 Hz, H-1), 2.12(d, J_{3,CH3}=4 Hz, CH₃-4), 3.81(dd, J_{2,3}=6.8 Hz, H-3), 9.79(s, CHO)]. The Corey oxidation⁹ (MnO₂, KCN-AcOH, MeOH) of <u>11</u> gave rise to \bigstar , β -unsatu-

The Corey oxidation⁹ (MnO₂, KCN-AcOH, MeOH) of <u>11</u> gave rise to \checkmark , 3-unsaturated ester <u>12</u> [syrup; $[\alpha]_{3}$ +151°; $\forall_{C=0}$ 1730 cm⁻¹; pmr: 4.82(d, J_{1,2}=2 Hz, H-1), 3.66(d, J_{2,3}=5 Hz, H-3), 3.75(s, COOCH₃)].

Upon catalytic hydrogenation (5% Pd/C, MeOH) <u>12</u> rapidly absorbed 1 equivalent of hydrogen whereafter the reaction practically stopped.

The resulted ester <u>13</u> (syrup; $[\alpha]_{0}$ +179°) was converted (MEM-NEt₃Cl, CH₃CN,

reflux, 12 h) into MEM¹⁰ derivative <u>14</u> [syrup; $[x]_{,b}$ +109°; pmr: 2.05(d, $J_{3,CH_{3}-4}=$ 0.7 Hz, $CH_{3}-4$), 3.37(s, $CH_{3}OC_{2}H_{4}OCH_{2}-$), 3.54(s, OCH_{3}), 3.77(s, $COOCH_{3}$), 4.80(dd, $CH_{3}OC_{2}H_{4}OCH_{2}-$)]. Hydrogenation of <u>14</u> (5% Pd/C, MeOH) gave mainly methyl(methyl-2,4-dideoxy-2,4-di-C-methyl-3-O-MEM-3-L-idopyranosyl)uronate <u>15</u> [syrup; $[x]_{,b}$ +70.6°; pmr: 1.04(d, J=7 Hz), 1.06(d, J=7.5 Hz), 4.47(d, $J_{4,5}=3.7$ Hz, H-5), 4.66(d, $J_{1,2}=$ 3 Hz, H-1), 4.79(s, $CH_{3}OC_{2}H_{4}OCH_{2}-$)] which represents the specifically protected $C_{1}-C_{6}$ segment of a number of 14-membered macrolide antibiotics (besides those mentioned above also for construction of lakamycins, kujimycin A, narbomycin, picromycin, kromycin, kromin¹ and some related macrolides).

REFERENCES AND NOTE

- 1. W.D. Celmer, Pure Appl. Chem., 28, 413 (1971).
- 2. M. Ĉerny, Adv. Carbohyd. Chem. Biochem., 34, 24 (1977).
- 3. A.F. Sviridov, A.Ya. Shmyrina, O.S. Chizhov, A.S. Shashkov, N.K. Kochetkov, <u>Bioorgan. Khimia</u> (USSR), <u>6</u>, 1647 (1980).
- 4. All new crystalline compounds gave correct microanalyses; melting points are uncorrected, optical rotations were mesured at 20±2° in chloroform (c~1), pmr spectra were recorded in CDCl₃ (S scale).
- 5. T. Trnka, M. Ĉerny, Collect. Czech. Chem. Communs., 36, 2216 (1971).
- B.G. Christensen, R.G. Strahan, R.N. Trenner, B.H. Arison, R. Hirschmann, J.M. Chemerda, <u>J. Amer. Chem. Soc.</u>, <u>82</u>, 3995 (1960).
- 7. K. Omura, D. Swern, Tetrahedron, 34, 1651 (1978).
- 8. S. Hanessian, G. Rancourt, Pure Appl. Chem., 49, 1201 (1977).
- 9. E.J. Corey, N.M. Gilman, B.E. Ganem, J. Amer. Chem. Soc., 90, 5616 (1968).
- 10. E.J. Corey, J.L. Gras, P. Ulrich, Tetrahedron Lett., 809 (1976).

(Received in UK 3 August 1981)